
SECURITY BACKGROUNDER 2023.12

LibreOffice: Software Quality and Security
LibreOffice started life as a fork of OpenOffice.org, the free office productivity suite developed 
by Sun Microsystems. OpenOffice.org project was born in 2000, one year after the acquisition 
of StarDivision (the German home of StarOffice) by Sun Microsystems, when Sun itself decided 
to transform the proprietary suite into an open source suite under the GPL and SISSL licences.

In 2010, the leaders of the volunteer community of the OpenOffice.org project, worried by 
Sun's management – based on outdated development methodologies and an excessively 
manual Quality Assurance process – and by Oracle's acquisition of Sun Microsystems (Oracle 
never hid its idiosyncrasy for open source software) decided to launch an independent project: 
LibreOffice.

Nevertheless, the quality and security of OpenOffice.org back then was already superior to 
that of any proprietary software, and in particular Microsoft Office. The CVE (Common 
Vulnerabilities and Exposures) database reports an order of magnitude higher number of 
problems, due to two factors: the greater fragility of proprietary source code, which does not 
benefit from the virtuous effects of security knowledge sharing, and the greater number of 
users, which makes it an easier target.

The higher quality of open source software was confirmed by Coverity Scan's Open Source 
Report: “In 2013, the quality of open source projects surpassed that of proprietary projects at 
all levels. For the 2013 report, we analysed about 500 million lines of code from about 500 
proprietary projects written in C/C++ and found that open source software has a lower defect 
density than proprietary software. One of the factors that led to this result is the effort made 
by some large projects - including LibreOffice - to collectively resolve more than 11,000 defects 
during the year” [1]

The Quality of LibreOffice Source Code
When the LibreOffice project was born, the developers changed the approach from 
OpenOffice.org, launching a source code clean-up activity that lasted throughout 2011, and 
since the beginning of 2012 has resulted in a significantly better quality office suite. As part of 
the clean-up activity, the developers also revised their approach to quality assurance, setting 
up an automated process based on state-of-the-art technologies.

The LibreOffice project uses Gerrit as a patch review tool for its integration with Git, the main 
distributed system for managing software development. The source code is regularly compiled 
by a battery of several Tinderboxes, and if the compilation is successful, it undergoes a series 
of automated tests that verify the behaviour of the software with thousands of documents.

Test files are scraped from several public Bugzilla instances: The Document Foundation, 
Launchpad (some), Freedesktop, Mozilla, GNOME, KDE, Gentoo, Mandriva, Novell, AbiSource, 
and W3C SVG test archives. The most suitable documents for testing are the bad ones, so we 
load and save all of those attached to bugs.

This automated activity is complemented by the work of LibreOffice’s Quality Assurance team, 
which uses tools such as Bugzilla to manage both bugs and regressions, and to report them to 
the developers where appropriate for fixing the source code.

Managing Defects in LibreOffice Source Code
The quality of source code has improved significantly since developers started using Coverity 
Scan services back in 2012 [2]. Since then, LibreOffice has come to be one of the software 



SECURITY BACKGROUNDER 2023.12

packages with the fewest 
defects as a proportion of 
source code lines. This 
activity is very important in 
terms of software security, 
as defects in source code 
are often associated with 
CVE reports (common 
vulnerabilities and 
exposures).

The first image provided by 
Coverity Scan represents 
the current situation of 
LibreOffice 7.6 Community’s 
source code, with 0 
outstanding defects. Over 
time, LibreOffice developers 

have fixed 27,929 defects, while 571 defects were dismissed as false positives.

The second 
image provided 
by Coverity Scan 
summarises the 
trend of 
outstanding 
versus fixed 
defects during 
the last 10 years. 
Since 2015, the 

number of outstanding defects has steadily been 0 or close to 0, while the number of fixed 
defects has been regularly increasing (the gap in 2019 is due to a complete overhaul of 
Coverity Scan analysis software).

This third image 
provided by 
Coverity Scan 
provides a 
better 
visualization of 
the defect 
density trend 
over the last 
couple of years, 

from August 2021 to August 2023. Only in February/March and August 2022 was LibreOffice 
defect density above 0.005 defects per 1,000 lines of code.

The numbers provided by Coverity Scan are a testament to the cleaning and refactoring of 
LibreOffice’s source code by developers since 2010. They also confirm the extent of the 
technical debt inherited from OpenOffice.org, which was completely resolved within four 
years. It was valuable work, understood by the market only in retrospect, when it finally 



SECURITY BACKGROUNDER 2023.12

became clear that LibreOffice's development strategy is appropriate.

Coverity Scan 
allows for the 
detection of 
crashes, security 
vulnerabilities, 
concurrencies, 
memory 
corruption, 
uninitialized 
memory, error 
handling, and 
resource leaks, 
and contributes 
to overall 
software 
security, 

because reducing the number of defects in the source code provides developers a more robust 
and resilient foundation for their work.

It is worth emphasizing, however, that a low number of defects on the source code - such as 
the one in LibreOffice - does not necessarily preclude the presence of bugs, regressions, and 
vulnerabilities.

Fuzzing to test LibreOffice source code
Fuzzing is an automated software testing technique, extensively used by LibreOffice 
developers, that provides invalid, unexpected, or random data as inputs to a computer 
program. The application is then monitored by the code sanitizer, a programming tool that 
detects bugs in the form of undefined or suspicious behavior, for issues such as crashes, failing 
built-in code assertions, or potential memory leaks.

Fuzzing is used as an automated technique to expose the vulnerabilities in security-critical 
programs that might be exploited with malicious intent, to demonstrate the presence of bugs 
rather than their absence.

The main fuzzing tool 
adopted by LibreOffice 
developers is Google 
OSS Fuzz, announced 
in 2016. It is a testing 
infrastructure used for 
Chrome and other free 
and open source 
software (FLOSS) 
projects, which 
combines fuzzing 
engines with sanitizers 
and provides a massive 

distributed execution environment powered by ClusterFuzz. Using OSS-Fuzz, the project is 
fuzzing 50 file formats and that fuzzing is constantly running as new changes are merged.



SECURITY BACKGROUNDER 2023.12

Managing Vulnerabilities in LibreOffice’s Source Code
The Common 
Vulnerabilities 
and Exposures 
(CVE) system 
provides a 
reference 
method for 
publicly known 
information 
around security 
vulnerabilities 
and exposures. 
The United 
States' National 
Cybersecurity 
FFRDC, operated 
by The MITRE 
Corporation, 
maintains the 
system, with 

funding from the US National Cyber Security Division of the US Department of Homeland 
Security.

A vulnerability is a computer software system's weakness that enables unwarranted access. 
The CVE Identifier is the unique number assigned to each vulnerability by a CVE Numbering 
Authority (CNA), such as The Document Foundation in the case of LibreOffice. When 
investigating a vulnerability or potential vulnerability it helps to acquire a CVE number early 
on, as all future correspondence can refer to it.

According to MITRE Corporation CVE database, which can be found at https://www.cve.org/ 
(formerly at https://cve.mitre.org/), LibreOffice has been affected by 50 CVEs during the last 10 
years. In the same period, Microsoft Office was affected by 505 CVEs - so one order of 
magnitude higher than LibreOffice.

In addition, all CVEs affecting LibreOffice were resolved with a patch released prior to the 
disclosure (by convention, the publication of CVEs in the database occurs between 30 and 60 
days after the problem is reported to the security team of the applications affected).

The website https://www.cvedetails.com/ provides a comparison based on the Common 
Vulnerability Scoring System (CVSS), an open set of standards used to assess a vulnerability 
and assign a severity along a scale of 0-10 (none to critical).

LibreOffice’s ESC (Engineering Steering Committee) is supported by a team of experts in more 
specific security issues, with world-class specialists, who often volunteer as security experts for 
companies that develop software in other sectors (a typical example is automotive software).

Having said all this, it should be made clear that the number of vulnerabilities can't be used to 
define a program's competitive advantage, and in fact we have never mentioned it to date, 
because it does not define the quality of the application itself but only represents the 
theoretical risk of it being used to access user data or compromise PC security. Thus, users 

https://www.cve.org/
https://www.cvedetails.com/
https://cve.mitre.org/


SECURITY BACKGROUNDER 2023.12

should never choose one software over another based on the number of vulnerabilities.

The importance of LibreOffice's native ODF file format
LibreOffice uses the open standard Open Document Format (ODF) as its native format, which 
can help organisations and companies to reduce their vulnerability to attacks from outside, 
compared to what can happen with proprietary file formats.

Proprietary office 
document formats 
are one of the most 
exploited 
vulnerabilities, 
according to 
independent research 
conducted by 
Symantec in 2011 and 
Kaspersky Labs in 
2018. At the 2019 
Security Analyst 
Summit, Kaspersky 
said that around 70 

percent of all attacks detected in Q4 2018 were trying to abuse a Microsoft Office vulnerability, 
a dramatic increase versus the 16 percent detected in 2016 (the slide is from the original 
presentation) [3].

The explanation is simple. Proprietary file formats such as the legacy DOC, XLS and PPT, and 
the current “transitional” DOCX, XLSX and PPTX, can contain binary blobs of data – which are 
the preferred vehicle for malware – to allow backward compatibility with old documents, a 
feature which was meant to protect users from content obsolescence.

Backwards compatibility, and its related binary blobs, not only reduce the security of Microsoft 
Office documents, but also prevent them from being standards compliant. In fact, while Office 
Open XML “strict” specifications do not foresee the integration of binary blobs as they cannot 
be visually represented by the XML code, they are allowed by the current “transitional” file 
format, which further adds complication and risk.

In contrast, the introduction of ODF created a break in the backward compatibility of 
documents, which was solved with software tools for format conversion. In this way, the 
format has always consistently adhered to the description of the XML-based standard, and has 
never required the integration binary blobs.

Of course, the use of the standard ODF format cannot guarantee the security of software, 
although it can simplify the task of the tools that must check for malicious code. The 
protection of users and their stakeholders is left to the security measures and anti-virus 
programs adopted by the individual or the organization.

In the case of LibreOffice, the standard Open Document Format is an important element which 
complements the work of the team of security experts by reducing the attack surface. 
LibreOffice’s security is the result of a global effort of the entire community, from companies in 
the ecosystem to volunteers contributing to development, Quality Assurance, documentation 
and localization.



SECURITY BACKGROUNDER 2023.12

Credits

LibreOffice’s security is the result of a huge amount of work by a group of people led by Caolán 
McNamara, which collectively adds up to some significant and ongoing support of LibreOffice 
by several brand-names:

• Red Hat, which led security activities for years

• Collabora, which has inherited Red Hat's leadership on security

• allotropia, which is supporting security-related efforts in specific areas

• Google, which is sponsoring OSS Fuzz and providing a lot of expensive CPUs

• Synopsys, which is providing the Coverity Scan static code analyzer for free

• Adfinis, which is funding the hardware for the crash tests

• The Document Foundation, which is providing the infrastructure for development and 
especially Quality Assurance, including professionals to coordinate activities

In addition, LibreOffice’s security is also related to the incredible work of volunteers in 
development and Quality Assurance, and to many contributions from security-focused 
companies such as Forcepoint.

Notes

[1] https://www.zdnet.com/article/coverity-finds-open-source-software-quality-better-than-
proprietary-code/

[2] https://scan.coverity.com/projects/libreoffice. Current numbers are based on the analysis 
of LibreOffice 24.2 source code, which will be released in early February 2024. At that time we 
will update the document based on the new figures.

[3] https://www.zdnet.com/article/kaspersky-70-percent-of-attacks-now-target-office-
vulnerabilities/

LibreOffice Security Backgrounder 2023.12 © 2023 by The Document Foundation is licensed 
under Attribution-ShareAlike 4.0 International. To view a copy of this license, visit 
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/
https://www.zdnet.com/article/kaspersky-70-percent-of-attacks-now-target-office-vulnerabilities/
https://www.zdnet.com/article/kaspersky-70-percent-of-attacks-now-target-office-vulnerabilities/
https://scan.coverity.com/projects/libreoffice
https://www.zdnet.com/article/coverity-finds-open-source-software-quality-better-than-proprietary-code/
https://www.zdnet.com/article/coverity-finds-open-source-software-quality-better-than-proprietary-code/

